TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitional Annealed Adaptive Slice Sampling for Gaussian Process Hyper-parameter Estimation

Surrogate models have become ubiquitous in science and engineering for their capability of emulating expensive computer codes, necessary to model and investigate complex phenomena. Bayesian emulators based on Gaussian processes adequately quantify the uncertainty that results from the cost of the original simulator, and thus the inability to evaluate it on the whole input space. However, it is ...

متن کامل

Gaussian process hyper-parameter estimation using Parallel Asymptotically Independent Markov Sampling

Gaussian process emulators of computationally expensive computer codes provide fast statistical approximations to model physical processes. The training of these surrogates depends on the set of design points chosen to run the simulator. Due to computational cost, such training set is bound to be limited and quantifying the resulting uncertainty in the hyper-parameters of the emulator by uni-mo...

متن کامل

Gaussian Process Adaptive Importance Sampling

The objective is to calculate the probability, PF, that a device will fail when its inputs, x, are randomly distributed with probability density, p (x), e.g., the probability that a device will fracture when subject to varying loads. Here failure is defined as some scalar function, y (x), exceeding a threshold, T . If evaluating y (x) via physical or numerical experiments is sufficiently expens...

متن کامل

Scalable Hyper-parameter Estimation for Gaussian Process Based Time Series Analysis

Gaussian process (GP) is increasingly becoming popular as a kernel machine learning tool for non-parametric data analysis. Recently, GP has been applied to model non-linear dependencies in time series data. GP based analysis can be used to solve problems of time series prediction, forecasting, missing data imputation, change point detection, anomaly detection, etc. But the use of GP to handle m...

متن کامل

Covariance-Adaptive Slice Sampling

We describe two slice sampling methods for taking multivariate steps using the crumb framework. These methods use the gradients at rejected proposals to adapt to the local curvature of the log-density surface, a technique that can produce much better proposals when parameters are highly correlated. We evaluate our methods on four distributions and compare their performance to that of a non-adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Uncertainty Quantification

سال: 2016

ISSN: 2152-5080

DOI: 10.1615/int.j.uncertaintyquantification.2016018590